Averaging principle of SDE with small diffusion: Moderate deviations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Moderate Deviations Type Evaluation for Integral Functionals of Diffusion Processes

where Ψ and g are smooth functions, ξε t is a “fast” ergodic diffusion whileXε t is a “slow” diffusion type process, κ ∈ (0, 1/2). Under the assumption that g has zero barycenter with respect to the invariant distribution of the fast diffusion, we derive the main result from the moderate deviation principle for the family (ε−κ ∫ t 0 g(ξ ε s)ds)t≥0, ε ↘ 0 which has an independent interest as wel...

متن کامل

Averaging principle for a class of stochastic reaction–diffusion equations

We consider the averaging principle for stochastic reaction–diffusion equations. Under some assumptions providing existence of a unique invariant measure of the fast motion with the frozen slow component, we calculate limiting slow motion. The study of solvability of Kolmogorov equations in Hilbert spaces and the analysis of regularity properties of solutions, allow to generalize the classical ...

متن کامل

Moderate Deviations for a Diffusion Type Process in Random Environment

Let σ(u), u ∈ R be an ergodic stationary Markov chain, taking a finite number of values a1, . . . , am, and b(u) = g(σ(u)), where g is a bounded and measurable function. We consider the diffusion type process dX t = b(X ε t /ε)dt+ ε σ `

متن کامل

Averaging principle for diffusion processes via Dirichlet forms

We study diffusion processes driven by a Brownian motion with regular drift in a finite dimension setting. The drift has two components on different time scales, a fast conservative component and a slow dissipative component. Using the theory of Dirichlet form and Mosco-convergence we obtain simpler proofs, interpretations and new results of the averaging principle for such processes when we sp...

متن کامل

Moderate deviations of inhomogeneous functionals of Markov processes and application to averaging

In this paper, we study the moderate deviation principle of an inhomogeneous integral functional of a Markov process ( s) which is exponentially ergodic, i.e. the moderate deviations of 1 √ h( ) ∫ : 0 f(s; s= ) ds; in the space of continuous functions from [0; 1] to R, where f is some R-valued bounded function. Our method relies on the characterization of the exponential ergodicity by Down– Mey...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Probability

سال: 2003

ISSN: 0091-1798

DOI: 10.1214/aop/1046294316